Differences of Slowly Varying Functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Very Slowly Varying Functions

A real-valued function f of a real variable is said to be (p-slowly varying ((p-s .v.) if limn_ . rp (x) [ f (x + a) f (x)] = 0 for each a. It is said to be uniformly 9-slowly varying (u . (P-s .v .) if limn-. . sup, e r rp(x) ; f (x-a) f (x)I =0 for every bounded interval I. It is supposed throughout that rp is positive and increasing . It is proved that if w increases rapidly enough, then eve...

متن کامل

Very Slowly Varying Functions Ii

This paper is a sequel to both Ash, Erd1⁄2os and Rubel [AER], on very slowly varying functions, and [BOst1], on foundations of regular variation. We show that generalizations of the Ash-Erd1⁄2os-Rubel approach –imposing growth restrictions on the function h, rather than regularity conditions such as measurability or the Baire property – lead naturally to the main result of regular variation, th...

متن کامل

On the Non-commutative Neutrix Product Involving Slowly Varying Functions

Let L(x) be a slowly varying function at both zero and infinity. The existence of the non-commutative neutrix convolution product of the distributions x+L(x) and x μ − is proved, where λ, μ are real numbers such that λ, μ / ∈ −N and λ+μ / ∈ −Z . Some other products of distributions are obtained. AMS Mathematics Subject Classification (2000): 46F10

متن کامل

Further results on Lyapunov functions for slowly time-varying systems

We provide general methods for explicitly constructing strict Lyapunov functions for fully nonlinear slowly time-varying systems. Our results apply to cases where the given dynamics and corresponding frozen dynamics are not necessarily exponentially stable. This complements our previous Lyapunov function constructions for rapidly time-varying dynamics. We also explicitly construct input-to-stat...

متن کامل

Slowly growing meromorphic functions and the zeros of differences

Let f be a function transcendental and meromorphic in the plane with lim inf r→∞ T (r, f) (log r)2 = 0. Let q ∈ C with |q| > 1. It is shown that at least one of the functions F (z) = f(qz)− f(z), G(z) = F (z) f(z) has infinitely many zeros. This result is sharp. MSC 2000: 30D35.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2000

ISSN: 0022-247X

DOI: 10.1006/jmaa.2000.6854